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Abstract

Intermittent hypoxia (IH) has been the subject of considerable research in recent years, and triggers a
bewildering array of both detrimental and beneficial effects in multiple physiological systems. Here, we
review the extensive literature concerning IH and its impact on the respiratory, cardiovascular, immune,
metabolic, bone, and nervous systems. One major goal is to define relevant IH characteristics leading to
safe, protective, and/or therapeutic effects vs. pathogenesis. To understand the impact of IH, it is essential
to define critical characteristics of the IH protocol under investigation, including potentially the severity of

hypoxia within episodes, the duration of hypoxic episodes, the number of hypoxic episodes per day, the
pattern of presentation across time (e.g., within vs. consecutive vs. alternating days), and the cumulative
time of exposure. Not surprisingly, severe/chronic IH protocols tend to be pathogenic, whereas any
beneficial effects are more likely to arise from modest/acute IH exposures. Features of the IH protocol most
highly associated with beneficial vs. pathogenic outcomes include the level of hypoxemia within episodes
and the number of episodes per day. Modest hypoxia (9–16% inspired O ) and low cycle numbers (3–15

episodes per day) most often lead to beneficial effects without pathology, whereas severe hypoxia (2–8%
inspired O ) and more episodes per day (48–2,400 episodes/day) elicit progressively greater pathology.

Accumulating evidence suggests that “low dose” IH (modest hypoxia, few episodes) may be a simple, safe,
and effective treatment with considerable therapeutic potential for multiple clinical disorders.
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ංඇඍൾඋආංඍඍൾඇඍ ඁඒඉඈඑංൺ (ංඁ) has been a topic of considerable research for decades. However, a full
understanding of IH and its biological effects is not yet at hand. Whereas some reports claim that IH elicits
pathology, others focus on its beneficial effects. This apparent discrepancy may, at least to some extent, be
explained by the wide range of experimental procedures/protocols described as “intermittent hypoxia”
among investigators. The essential feature of IH is repeated or recurrent episodes of low oxygen (hypoxia),

interspersed with periods of normoxia. However, this definition does not begin to capture the range of
protocols reported in the literature. There appears to be no real consensus concerning what should be
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defined as “intermittent hypoxia,” nor is there any real understanding of key variables defining the
biological impact of IH. The fundamental goal of this brief review is to assess relevant characteristics
leading to beneficial/compensatory vs. maladaptive/pathological outcomes.

Specific IH protocols/paradigms reported in the literature are most often associated with the specific
perspective or field of study of the investigators. Reported IH protocols vary greatly in terms of 1) the
severity of hypoxia (e.g., the level of hypoxemia, frequently reported as the inspired oxygen percentage); 2)
the duration of hypoxia within episodes; 3) the number of hypoxia/reoxygenation cycles (episodes) per day;
4) the pattern of presentation (e.g., multiple episodes per day with a normoxic period until the next day vs.
exposures of limited episodes three days per week, etc.); 5) the cumulative duration of exposure
(days/weeks/months); and 6) regulation of other relevant variables, such as the prevailing level of arterial
carbon dioxide. Comparing literature descriptions of protocols described as “intermittent hypoxia:” 1) the
severity of hypoxia within episodes ranges from 2% to 16% inspired oxygen; 2) the duration of hypoxic
episodes ranges from 15–30 s to 12 h; 3) the number of cycles per day ranges from 3 to 2,400; 4) the
cumulative IH protocol duration ranges from less than 1 h, to between 2 and 90 days; and 5) most long-
lasting protocols involve IH on consecutive days, although some use alternating days (e.g., every other day
or 3 times per week). Each of these variables must be carefully considered before we can understand the
biological impact of IH since, collectively, they define the effective IH “dose” (39).

Since many laboratories apply unique IH paradigms, discrepancies in terminology make generalizations
difficult and obstruct efforts to understand the biological impact of IH. On the other hand, it is

counterproductive to completely standardize protocols, since such standardization will obscure the range of
IH prevalent in life and may prevent an appreciation of the wide-ranging impact of IH on physiology (155).
To maximize progress toward greater understanding and ability to manipulate IH protocols for therapeutic
advantage in diverse clinical disorders, a detailed understanding of different animal models and
mechanisms underlying each particular disorder will be useful to define optimal IH protocols in each
condition.

Although we do include some altitude physiology studies, we do not thoroughly review literature reports
concerning the use of IH to preacclimatize individuals as a means of improving their performance at high
altitude. Further, we do not systematically discuss cellular mechanisms giving rise to the therapeutic vs.
pathogenic IH effects. Rather, the purpose of this review was to examine key features of experimental IH
protocols that determine their impact on a wide range of physiological systems. We emphasize in vivo
animal models, human studies, and lessons from IH-induced respiratory plasticity (the perspective of the
authors). Accumulating evidence reviewed here suggests that modest hypoxia (9–16% inspired O ) and

low cycle numbers (3–15 episodes per day) often lead to beneficial effects without detectable pathology,
whereas protocols utilizing severe hypoxia (3–8% inspired O ) and more episodes per day (48–2,400

episodes/day) elicit pathology (Fig. 1).

Respiratory System

Sleep apnea.

Considerable progress has been made in recent decades toward an understanding of pathophysiology and
pathogenesis resulting from obstructive and central sleep apnea. Central sleep apnea is often the product of
an unstable ventilatory control system, at least in part, due to high chemoreflex responsiveness and variable
apneic CO  thresholds (261). On the other hand, obstructive sleep apnea (OSA) typically occurs in

individuals whose narrowed upper airways and reduced upper airway muscle activity during sleep interact
to cause airway collapse (222). Although problems with maintenance of upper airway patency result
primarily in obstructive sleep apnea, ventilatory control instability can lead to either central or obstructive
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apnea depending on airway collapsibility.

IH elicits multiple forms of respiratory plasticity expressed as a long-lasting increase in: 1) phrenic nerve
activity in anesthetized rats (phrenic long-term facilitation, pLTF) (9, 14); 2) tidal volume in unanesthetized

rats (ventilatory long-term facilitation, vLTF) (160, 170); 3) upper airway muscle activity (e.g., hypoglossal
long-term facilitation) (34, 200, 218); and 4) the short-term hypoxic (phrenic or) ventilatory response (154,
181). Some have suggested that these forms of respiratory plasticity are compensatory, and reduce the
incidence of apneas (1, 128, 139, 199); in contrast, others have suggested that it can have the opposite
impact (35, 174, 223). Undoubtedly, each form of plasticity listed above can be beneficial or detrimental
depending on prevailing conditions.

The therapeutic potential of IH to treat sleep apnea is uncertain since it has the potential for both stabilizing
and destabilizing influences on breathing in anesthetized rats (129) and humans (67). For instance,
moderate IH protocols (10, 3-min episodes of 8% O , 5-min intervals) decreased upper airway resistance in

OSA patients (1, 218). On the other hand, this same protocol does not alter upper airway critical closing
pressure in OSA patients (198), suggesting that changes in upper airway resistance and caliber can be
dissociated from upper airway collapsibility. Chronic IH (5-min episodes of 11–12% O , 5-min intervals,

12 h/night, 7 days) enhances the hypoxic ventilatory response (114, 192), which elicits beneficial effects on
upper airway (UA) patency, yet diminishes breathing stability. An elevated hypoxic ventilatory response
(HVR) increases UA dilating muscle activity, thereby decreasing UA resistance (10). On the other hand, an
elevated HVR increases respiratory control system “loop gain”, potentially destabilizing breathing and
(secondarily) upper airway stability. For example, an exaggerated HVR will cause undershoots in arterial
CO  (35), thereby, reducing ventilatory drive and UA dilator muscle activity. These effects increase the

likelihood of subsequent airway collapse. High HVR levels are thought by many to destabilize breathing in
OSA. In contrast, IH-induced vLTF might promote breathing stability by ensuring adequate ventilatory
drive despite fluctuating CO  levels near an apneic CO  threshold (128). In patients with moderate OSA,

acute intermittent hypoxia (AIH)-induced increases in the HVR (i.e., progressive augmentation) are greater
in the morning, whereas vLTF is greater in the evening (67). If an exaggerated HVR is detrimental and
vLTF is beneficial with respect to breathing stability, IH presentations may have greater therapeutic
potential in the evening.

Early studies attempting to detect vLTF in humans were performed in poikilocapnic human subjects (i.e.,
uncontrolled CO  levels). However, recent evidence shows that IH-induced vLTF is more prominent in

individuals with slight, sustained hypercapnia (109, 223). Mateika and Syed (139) propose that moderate
acute intermittent hypoxia combined with sustained hypercapnia and continuous positive airway pressure
may have therapeutic benefits in sleep apnea patients. The positive airway pressure would maintain upper
airway patency. The sustained hypercapnia would promote long-term facilitation in upper airway muscle
activity, thereby increasing upper airway patency, as well as vLTF. In principle, the number of apneas

would be reduced by sustained hypercapnia since it moves the prevailing arterial CO  away from the CO

apneic threshold. Additional work is needed to determine the efficacy and (subsequently) optimal IH
protocol to maximize upper airway LTF and vLTF without the destabilizing influence of increased
chemoreflex sensitivity in patients with sleep apnea.

Chronic obstructive pulmonary disease.

Chronic obstructive pulmonary disease (COPD) is a category of chronic irreversible lung diseases that
includes emphysema, chronic bronchitis and asthma (186). IH training may be useful in patients suffering
from COPD. Ukrainian and Russian researchers have used IH training to treat COPD and report beneficial
effects, including improved clinical symptoms without unwanted side effects (215).

Randomized, double-blind and controlled clinical trials demonstrate that repetitive mild acute IH (3–5 min
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of 12–15% O , 3–5 min normoxic intervals, 5–9 episodes/day, 15 days) elicits beneficial effects in COPD

patients, including increased exercise time, baroreflex sensitivity, hypercapnic ventilatory response, total
hemoglobin, forced expiratory volume in 1 s, and forced vital capacity (24, 79). However, longer hypoxic
intervals in healthy subjects revealed no significant differences between IH-treated vs. control subjects. For
example, normobaric hypoxia (3–10 h of continuous hypoxia 12–15% O  for 7–20 consecutive days)

revealed no difference in the hypoxic ventilatory response or ventilatory capacity among groups (97, 232).
Similarly, with hypobaric intermittent hypoxia (4,000 or 5,500 m altitude, 3 h/day, 5 days/wk, 4 wk), there
were no differences among groups in the HVR or cardiovascular function (61, 73). Accumulating evidence
suggests that IH protocols with short hypoxic intervals (3–5 min) are more effective at increasing
ventilatory capacity vs. prolonged hypoxic exposures (3–10 h). Despite scarce literature concerning
moderate IH in COPD patients, available evidence is promising and raises hope that IH could be used as a
complementary therapy with few adverse side effects.

Cardiovascular System

IH training has long been recognized by Russian physician/scientists as a therapeutic approach to prime
patients to withstand the stress of diverse disease processes. Their rationale was that adaptations to one

stress may increase resistance to another (145). Thereafter, IH training was recognized by the sports
medicine community as a useful strategy to enhance aerobic exercise performance (62). For example, IH
(2.5 min of 10.5% O , 1.5-min intervals, 4 h), in combination with low-intensity exercise, improves blood

oxygen transport capacity and aerobic endurance and induces altitude acclimatization (29, 98, 101, 194). In
this case, “living high” and “training low” promote hematological adaptations that improve aerobic
performance without eliciting adverse effects characteristic of more severe IH protocols [e.g., chronic
intermittent hypoxia (CIH)].

From the opposite perspective, the association of hypertension and heart disease with OSA has fostered
considerable interest in links between IH and cardiovascular disease. Accordingly, more severe and
prolonged IH protocols that more closely simulate the IH experienced during OSA were developed. Such
CIH protocols significantly increase blood pressure (21, 57, 111, 225), increase right ventricular heart mass
(143), and are associated with pulmonary vascular remodeling and hypertension (162). Nonetheless,
moderate IH protocols elicit beneficial cardiovascular effects in animal models and humans (17, 163, 213,

258, 260), suggesting an IH dose-response in its physiological impact.

Arterial hypertension.

During hypoxic episodes, chemoreceptor-mediated sympathetic activity increases heart rate, cardiac output,
peripheral resistance, and systemic arterial pressure. However, different prolonged IH protocols produce
divergent effects on post-IH systemic arterial blood pressure. The hypertensive effects of severe CIH,
mimicking OSA, vs. depressor effects of modest IH exemplify this dichotomy. OSA imposes a series of
brief, intense hypoxic episodes leading to persistent, maladaptive chemoreflex-mediated activation of the
sympathetic nervous system, culminating in hypertension (107, 175, 182). Conversely, accumulating
evidence in animal models and humans suggests that moderate IH conditioning may be safe and effective
as a means of prevention and/or treatment for systemic hypertension (213, 217).

CIH in humans and rodents elevates blood pressure, and this effect outlasts the period of IH exposure
(250). In the rodent studies, the IH dose impacts the magnitude of increased systemic blood pressure.
Severe CIH protocols (60–120 episodes/h, 2–5% inspired oxygen, 14–35 consecutive days) increase mean
arterial pressure by 9–16 mmHg (21, 57, 111, 225). Moderate CIH protocols (15–20 episodes/h, 6–10%
inspired oxygen, 14–70 consecutive days) increase MAP by 12 mmHg (133). Yet milder protocols (10
episodes/h, 10% inspired oxygen, 7 consecutive days) increase MAP less than 2 mmHg in female rats (84).
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The greatest increases in blood pressure were observed in studies where hypocapnia was prevented via
inspired carbon dioxide supplementation. To mimic the episodic asphyxiation imposed by OSA, McGuire
and Bradford used combined hypoxia (6–8%) and hypercapnia (12–14%) for 15 s, interspersed with 15-s

normoxia/normocapnia (8 h/day, 5 days/wk, 5 wk). This protocol increased diurnal mean systemic arterial
pressure by 17 mmHg (142). In young, healthy humans, CIH (13% inspired oxygen, 30 episodes/h, 9 h/day,
14 consecutive days) increases the short-term HVR, blood hemoglobin concentration, and daytime blood
pressure (228).

Chronic, severe intermittent hypoxia (57) persistently activates the sympathetic nervous system (55, 112,
182, 219, 220), as well as the renin-angiotensin system (56, 58), increasing blood pressure during apneic
events and post-IH wakefulness. Since carotid chemoreceptor denervation prevents CIH-induced
hypertension, chemoreceptor or central nervous system (CNS) chemoreflex plasticity underlies this
response (57).

The therapeutic potential of IH to treat hypertension has been studied under hypobaric and normobaric
conditions. Treatment sessions (30 min, 2–3 h/day, 10–30 days) at simulated altitudes of 1,500–3,500 m
(13–17% inspired oxygen) significantly decreased arterial pressure in 60% of hypertensive patients (187).
Although hypobaric and normobaric hypoxia elicit similar physiological responses, hypobaric protocols are
poorly tolerated by humans (94, 193). Unwanted side effects of hypobaric hypoxia include headache, chest
pain associated with insufficient blood flow to the heart, palpitations, and dizziness (53). Mechanisms
differentiating normobaric vs. hypobaric hypoxia may include differences in ventilatory patterns, alveolar

gas disequilibrium, and acute hypoxic ventilatory responses (193).

Normobaric hypoxia is a more practical way to elicit IH, since it is much simpler to decrease inspired
oxygen fraction at atmospheric pressure. Similar to hypobaric IH, normobaric IH normalizes blood
pressure in hypertensive patients (123, 213, 217). For example, moderate IH (10, 5 min cycles/day,
10–14% inspired O , 5-min normoxic intervals) administered to 56 patients with stages I-II hypertension

reduced systolic and diastolic blood pressure, heart rate, and peripheral resistance (158). A similar IH
protocol (4–10, 3-min cycles/day, 10% inspired O , 3-min normoxic intervals) decreased blood pressure in

hypertensive patients to normotensive levels (123). Furthermore, IH proved safe in elderly patients,
reducing clinical symptoms of angina, normalizing lipid metabolism, and microcirculation, and increasing
maximal oxygen consumption and exercise tolerance (103).

The antihypertensive effects of moderate IH may arise from increased endothelial NO production (36, 68,
123, 132), which produces vasodilation and opening of reserve capillaries (decreasing peripheral
resistance), reduced sympathetic activity (148, 184), minimized calcium overload of vascular smooth
muscle (36), improved water and salt metabolism (18), increased antioxidant enzyme activity (7), and
increased synthesis of angiogenic growth factors, including VEGF and FGF (248). Finally, moderate IH
augments parasympathetic activity similar to altitude acclimatization (90, 190).

Although CIH elicits persistent hypertension similar to OSA (59), moderate IH protocols reduce blood
pressure in hypertensive rodent models and humans (213). Again, a major reason for this divergence is that
the cardiovascular response depends on the IH “dose”. IH protocols inducing systemic hypertension
generally employed brief (6–30 s episodes) and severe (3–9% O ) hypoxemia, as well as prolonged (6–12

h/day) exposures (57, 178, 225). In comparison, moderate IH involves longer hypoxic episodes (45 s to
several hours), less severe hypoxia (10–12% O ), and shorter protocol durations per day (1–2 h/day); such

protocols do not increase systemic blood pressure in normal rats and actually reduce blood pressure in
spontaneously hypertensive rats (213). Whereas “high-dose” CIH elicits sympathetic nervous system
activation (31, 112, 182), increased oxidative stress (105, 233), systemic inflammation (5, 23, 202, 212),
and persistent hypertension, moderate “low-dose” IH protocols minimally activate and/or dampen these
same physiological responses. Such dose-dependent impact of IH on physiological functions likely
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accounts for many apparent disagreements in the literature, and suggest that “low-dose” IH may be
harnessed for therapeutic benefit without invoking comorbidities characteristic of CIH. Indeed, the
apparent lack of adverse side effects from low-dose IH that are often encountered with common

antihypertensive drugs makes IH an interesting and novel therapeutic strategy to treat systemic
hypertension. Before this concept can be advanced, details of the IH dose-response must be understood to
optimize benefits while minimizing pathogenesis in each patient. The severity, frequency, and duration of
IH episodes are key determinants of its physiological impact (Fig. 1).

Myocardial infarction.

Myocardial infarction remains the major cause of cardiovascular morbidity and mortality, despite advances
in drug therapy and interventional procedures (196). The heart adapts to stress, such as brief ischemic
episodes that enhance myocardial tolerance to subsequent ischemic incidents (159). Myocardial ischemic
tolerance is also induced by IH preconditioning, which exerts cardioprotective effects. For instance, 24-h
post-IH pretreatment (40 s of 10% O , 20 s normoxic intervals, 30 min), rats exhibit reduced myocardial

infarct size after global ischemia-reperfusion (17). Similarly, infarct size is decreased in dogs pretreated
with IH preconditioning (5–10 min cycles of 9.5–10% inspired O ), as was ventricular tachycardia and

fibrillation 24 h after occlusion of left anterior descending coronary artery (130). The same IH protocol in
rats reduces cardiac arrhythmias during ischemia and decreases infarct size by 43% (131). Mechanisms
suggested to explain these cardioprotective effects may involve β1 adrenergic receptor activation (130)
and/or increased nitric oxide production (205).

In humans, moderate IH (5 min, 10–14% O , 3-min intervals, 15 episodes/day, 3 wk) increases peak

oxygen consumption in elderly men (50–70 years old), both with and without coronary artery disease (25).
Moreover, during submaximal exercise (cycling at 1 W/kg), heart rate, systolic blood pressure, blood
lactate concentration, and perceived exertion are diminished by IH (25). Myocardial protection correlates
with the ability of moderate IH (2 min of 10% O , 2-min intervals, 30 min) to increase myocardial

vascularity, coronary blood flow, cardiomyoglobin, and antioxidant enzyme expression (266).

Ischemic tolerance of the heart can also be induced by long-term intermittent hypobaric hypoxia (6, 163,
257). This cardioprotection persists longer than normobaric ischemic preconditioning (20, 26, 164, 263)
and is associated with fewer adverse side effects (e.g., right ventricular hypertrophy) vs. chronic sustained
hypoxia (6, 92, 173, 256). For example, rats exposed to hypobaric IH (7,000 m altitude, 8 h/day, 35 days)
exhibit significantly reduced infarction size and antiarrhythmic protection after 30 min of coronary artery
occlusion (164). Cardiac protection by hypobaric IH has been linked to several mechanisms, including
greater preservation of Ca  homeostasis (32), regulation of calcium/calmodulin-dependent protein kinase

II activity (260), reduced myocardial apoptosis (47), and opening of mitochondrial ATP-sensitive
potassium channels (102, 165).

Intermittent hypobaric hypoxia is not only protective, but also therapeutic with acute myocardial infarction
in animal models, although doubts continue as to whether IH represents a safe technique in postmyocardial
infarction patients (32, 45, 78, 165, 249). For instance, intermittent hypobaric hypoxia (404 mmHg, PaO

84 mmHg, 6 h/day, 14 days) improves postischemic recovery of myocardial contractile function by
elevating reactive oxygen species (ROS) production during early reperfusion (249). Seven days after left
anterior descending coronary artery ligation, rats exposed to similar protocols showed significantly reduced
left ventricular dilation and improved cardiac performance (258). This effect was accompanied by
attenuated infarct size, increased coronary blood flow, capillary density, and VEGF expression (258), as
well as activation of genes increasing myocardial cell survival (171).

IH increases erythropoietin (EPO) concentrations, stimulating erythropoiesis (22, 136) and increasing
hematocrit, blood viscosity, and platelet count (22). Elevated hematocrit increases the risk of ischemic
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stroke and myocardial infarction (117, 118). On the other hand, other studies found no evidence for
alterations in the erythropoietic response with different IH protocols (96, 234). For example, 2-h daily of
normobaric IH (13% O ) for 12 days shows no effect on morning plasma EPO concentration (66).

Similarly, hypobaric IH at 3,000 m (14% oxygen equivalent) does not enhance erythropoiesis (166),
whereas greater simulated altitudes (5,000–6,300 m; 7–8% oxygen equivalent) robustly increase several
hematological variables (51, 241); thus, a dose-response relationship exists between the severity of hypoxia
and erythropoiesis.

Despite abundant literature supporting cardioprotective and therapeutic effects of IH in myocardial
infarction, clinical translation remains controversial, possibly due to inadequate ischemic/reperfusion
models to simulate human patients (81). Nevertheless, IH appears promising as a therapeutic strategy for
coronary heart disease due to its simplicity and long duration of action, with few demonstrated adverse
effects (32, 183, 258). However, additional studies are needed to define the most effective IH dose to elicit
optimum therapeutic outcomes with minimal patient risk.

Inflammatory/Immune Responses to IH

OSA elicits systemic inflammation (105, 201, 243), and markers of systemic inflammation correlate with
cardiovascular disease in both OSA and non-OSA cohorts (105, 150). CIH is hypothesized to activate NF-
κB-mediated inflammatory pathways (201), leading to increased expression of the inflammatory mediators
TNF-α, IL-6, and c-reactive protein (CRP) (99, 105, 206). CIH-induced inflammation may cause

endothelial dysfunction and injury, contributing to atherosclerosis associated with OSA (113). From this
perspective, IH is deleterious because of its proinflammatory effects. On the other hand, some reports
indicate minimal systemic inflammation in OSA patients (76, 100, 177). Differences in these studies may
relate to the specific indicators of systemic inflammation studied, or differences in the effective IH dose in
OSA patients.

In contrast to CIH (simulating aspects of OSA), studies using more moderate IH protocols found no
evidence for systemic inflammation in rodent models (227). For instance, IH consisting of hypercapnic
hypoxia (6 min of 8% O , 7% CO ; 6 min normoxic/normocapnic intervals, 90 min) does not increase

TNF-α or CRP in male piglets (227). Moreover, a single daily isocapnic hypoxia exposure (oxyhemoglobin
saturation: 80%  48 mmHg PaO , 1 h/day) for 10 consecutive days does not affect markers of systemic

inflammation in healthy young men (185).

Inflammation elicited by OSA may relate to multiple factors beyond CIH per se, such as obesity or
nocturnal arousal. For example, 12 wk of CIH (30 s 5% O , 30-s intervals, 12 h/day, 12 wk), increased

hepatic TNF-α gene expression only in mice fed a high-cholesterol diet (210). In OSA patients, CRP levels
are significantly correlated with the body mass index, esophageal pressures, hip/waist ratio and neck
circumference (76). Inflammation may also relate to the frequent arousals experienced by OSA patients
(146). Thus, mechanisms of inflammation in OSA patients require further investigation.

Of considerable interest is that some studies suggest that moderate IH protocols actually enhance the innate
immune system, while having an overall anti-inflammatory effect. For example, in healthy humans,
exposure to 4, 5-min episodes of 10% O  (5-min room-air intervals, 14 days) augments phagocytic and

bactericidal activities of neutrophils, while suppressing proinflammatory mediators such as TNF-α and IL-4
by more than 90% (214). These responses, which persisted at least 7 days post-IH, may augment the body's
immune defenses without attendant inflammation.

Together, these studies provide at least some empirical support for the idea that IH can have both
proinflammatory and anti-inflammatory actions, depending on the IH dose. Thus, select IH protocols may
have clinical applications in patients with ongoing systemic or neural inflammation. However, the potential
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of IH in immunotherapy has scarcely been explored. Further research is necessary to identify the optimum
IH “dose” (e.g., severity of hypoxia, frequency of cycles) to enhance the innate immune system without
triggering inflammation (or actually being anti-inflammatory).

Metabolic Responses to IH

According to World Health Organization criteria, metabolic syndrome consists of obesity with associated

diabetes mellitus, impaired glucose tolerance, altered fasting glucose levels, and/or insulin resistance
(255a). Metabolic syndrome is a chronic, multifactorial disorder resulting from complex interactions
between genotype, environment, and physical activity patterns (134). A significant percentage of the obese
population suffers from OSA (140), and it has been suggested that prolonged CIH contributes to metabolic
syndrome in individuals with OSA. In animal models, typical CIH protocols (40 s 6% O , 40-s normoxia, 8

h/day, 35 days) alter metabolic hormones; elicit pancreatic β-cell injury (49); and increase sympathetic
activation (268), systemic inflammation (4), and levels of the appetite stimulant, neuropeptide Y (230).
Collectively, these changes increase food intake, leading to obesity, hypertension, and insulin resistance
(189).

In contrast, more moderate IH protocols are reported to have beneficial effects on metabolism, including
reduced body weight, cholesterol, and blood sugar levels, as well as increased insulin sensitivity. For
example, IH (10–12% O , 3 times per week, 3–6 wk) with/without physical training (20-min strength-

resistance exercises and 30 min high-intensity aerobic exercises) has been proposed as a means of losing
weight and increasing aerobic capacity (240) without detrimental effects often associated with prolonged
CIH protocols. This method induces physiological adaptations that enhance athletic performance (105,
252).

Mechanisms of moderate IH-induced weight loss may include increased serotonin and/or leptin levels.
Acute hypoxia in both humans and rats increases blood serotonin levels, although this finding is strictly
correlative (72). Food intake, protein intake, carbohydrate selection, and body weight are all at least
partially regulated by serotonin, a molecule known to produce anorexia in rats (72). Moderate IH also
reduces body weight by increasing blood leptin concentrations and enhancing liver leptin expression (116).
Leptin is a peptide hormone secreted primarily by white adipose tissue, acting on the hypothalamic
metabolic control center to reduce energy intake, increase energy consumption, and reduce body fat
composition (157). Differentiated human PAZ6 adipocytes cultured for 48 h in 6% oxygen increase leptin
mRNA expression, leptin promoter activity, and leptin secretion by two- to three-fold (75). Interestingly,
hypoxia (8% O ) for 3 h does not significantly alter in vivo leptin gene expression in rat adipose tissue;

however, increased leptin mRNA levels were observed in liver, kidney, and lung tissue (147). Beyond its
role in body weight regulation, leptin also plays key roles in inflammation, tissue repair, and angiogenesis;
thus, peripheral leptin upregulation during hypoxia may play an important role in tissue repair (52).

Moderate hypoxia (14.6% inspired O ) reduces blood glucose and cholesterol levels (33, 116) and

increases insulin sensitivity in subjects with Type 2 diabetes (127). Hypoxia also increases mitochondrial
enzymatic activity, glycolysis, and fatty acid oxidation, but reduces cholesterol synthesis (116, 226).
Prolonged moderate IH (12 h, 14% O , 7 days/wk, 4 wk), with or without physical training, improves

glucose tolerance and increases glucose transporter (GLUT-4) levels in rats (33). Hypoxia stimulates
glucose disposal, independent of contractile activity in rodents (28, 33), isolated human muscle tissue (8),
and patients with Type 2 diabetes (127). Further, exercise (60 min at 90% of lactate threshold) enhances the
impact of moderate hypoxia on insulin sensitivity (127), suggesting that insulin signaling and insulin-
dependent glucose transport are upregulated following hypoxic exercise (33).

Although moderate IH effects in metabolic diseases have not been fully explored, accumulating evidence
suggests that moderate IH combined with exercise may help prevent and/or correct metabolic impairment
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associated with insulin resistance, obesity, and Type 2 diabetes.

Bone

Intermittent hypoxia has positive effects on bone tissue remodeling (77, 119). Rats exposed to IH (10 min,
13% O , 10-min intervals, 4 h/day, 28 days) increase alkaline phosphatase activity in bone tissue (119),

suggesting high osteoblast activity and new bone formation. Moreover, rats exposed to hypobaric IH (430
mmHg  34 mmHg PaO ; 5 h/day, 5 days/wk, 5 wk) show increased bone mineral density (77), an effect

that may result from increased nitric oxide (NO) levels in IH-treated rats since increased bone mineral
density was not observed in rats with NO synthase inhibition. High NO levels inhibit bone resorption by
inhibiting osteoclast formation and resorptive function of mature osteoclasts (188). Thus, moderate IH
protocols may restrain osteoclastic activity and/or stimulate osteoblastic activity, although potential
mechanisms leading such effects remain unknown. Further studies are needed to assess IH effects on
osteopenia and osteoporosis.

Nervous System

Learning and memory.

OSA causes neurocognitive and behavioral deficits (43). Similarly CIH protocols that simulate IH
experienced in OSA cause multiple cognitive deficits in rodents. For instance, 14 days of CIH (90 s of 10%
inspired O , 90-s intervals, 12 h/day, 14 days) during the habitual sleep times of adult male rats reduced

REM sleep and impaired hippocampus-dependent learning (74). Both rats and mice display cognitive
deficits after CIH, consistent with impaired hippocampal and/or prefrontal cortex function (48, 176, 197,
224).

CIH also triggers hypersomnolence, a typical clinical complaint of OSA patients. CIH during the sleep
cycle for 8 consecutive weeks hinders the ability to maintain wakefulness in mice, suggesting that CIH per
se contributes to excessive daytime sleepiness in OSA patients (242). In humans, a randomized cross-over
design trial demonstrated that CIH (1 min of 6% inspired O , 1-min intervals, 6 h/day) negatively impacts

spatial working memory in healthy young adults (30). High-cycle frequency vs. the cumulative duration of
CIH protocol has a greater, detrimental impact on learning and memory.

CIH triggers neuronal apoptosis and cytoarchitectural disorganization in brain regions involved in learning
and memory, such as the hippocampal CA1 subfield and the frontoparietal cortex (74). Increased apoptotic
activity peaks after 48 h of CIH, and then slowly decreases to levels that remain above normoxic controls

(74). CIH reduces N-methyl-ൽ-Aspartate (NMDA) receptor density and the excitability of hippocampal
CA1 neurons (179), thereby diminishing the ability of hippocampal neurons to express NMDA-dependent
long-term potentiation, a neuronal correlate of memory formation (172). In contrast, moderate IH protocols
do not elicit similar CNS pathology. Rats exposed to moderate IH (5 min of 10.5% inspired O , 5-min

normoxic intervals, 10 times/day) either daily for 7 days, or 3 times per week for 4 to 10 wk, show no signs
of hippocampal apoptosis or astrogliosis (121, 208, 254).

Deleterious CIH effects may be more pronounced during development. Early-life CIH is associated with
anomalous brain development (149, 211) and clinical conditions, such as schizophrenia (42, 191), cerebral
palsy, and mental retardation (104). On the other hand, it appears that moderate IH in early life accelerates
brain development, leading to greater learning capacity (122, 135, 216, 262). Increased learning capacity
has been studied in rodent models, expressed as increased development of conditioned reflexes. Moderate
neonatal IH in mice (10.8% O , 4 h/day from birth to 4 wk of age) enhances performance in Morris water

maze and 8-arm radial maze tasks (262). A similar protocol, but with milder hypoxia (16% O ), also

enhanced spatial learning and memory in developing mice (122). IH-increased learning capacity is
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associated with increased brain DNA concentrations, increased neurogenesis (135), and increased
expression of proteins involved in synaptic plasticity (122).

The discrepancy among studies seems to be related to differences in the severity of the hypoxic stimuli and

the frequency of hypoxic episodes per day. Studies used to mimic aspects of OSA are not expected to have
therapeutic benefits due to coincident CNS pathology. On the other hand, moderate IH protocols may
enhance learning capacity in developing rodents; the impact of moderate repetitive IH in adults is not yet
clear. Moderate repetitive IH protocols (3 times/wk, 10 wk) appear to be safe, offering the possibility that
this paradigm may be useful as a therapeutic strategy to elicit functional recovery from motor impairment
in multiple clinical conditions (see below).

Brain ischemia and stroke.

IH preconditioning is neuroprotective for subsequent ischemic injury (46, 221). For example, IH
preconditioning (8% inspired O , 4 h/day, 2 wk) reduces the size of infarction, inflammation, and increased

blood-brain barrier permeability after 60-min of transient middle cerebral artery occlusion (MCAO) in
mice (221). Changes in gene expression differ markedly between harmful ischemia and ischemic
preconditioning. Preconditioning seems to attenuate the response to subsequent ischemic incidents,
increasing the expression of genes involved in the suppression of metabolic pathways, immune responses,
ion-channel activity, and blood coagulation (46).

Some have suggested that IH has therapeutic potential for chronic cerebral ischemia. Brain ischemia is

characterized by reduced brain-derived neurotrophic factor (BDNF), diminished synapse formation, and
impairments in learning and memory in rodents (50, 110, 238). Seven days post-MCAO in rats, moderate
IH (12% O , 4 h/day, 7 days beginning 7 days post-MCAO) rescues ischemia-induced spatial learning and

memory impairment by inducing hippocampal neurogenesis, synaptogenesis, and BDNF expression (237).
Moderate IH also reduces infarct size without increasing mortality. In contrast, the same IH protocol
administered 1–2 days postischemia increases mortality (236), suggesting that IH may have therapeutic
potential for chronic, not acute brain ischemia. Although moderate IH may reduce complications associated
with chronic brain ischemia in rats, studies are required to support IH as a potential therapy for cerebral
ischemia in humans. If proven to be safe and effective, repeated low-dose IH may confer long-term brain
protection in subpopulations of individuals at identified risk for stroke.

Depression.

Since many depressed patients show partial or no response to antidepressants (54), new, more effective
treatment options are needed. Preconditioning with mild IH has a preventive/therapeutic effect in rodent
models of depression (203, 204). For example, IH preconditioning (10% O  2 h/day, 3 days) has an

antidepressant effect in learned helplessness, a common model of depression, and returns behavioral and
hormonal variables to control levels; this effect was not significantly different from standard antidepressant
drugs (203, 204). IH also exerts therapeutic benefits with ongoing depression in rodent models, and in
humans. Given the strong link between hippocampal neurogenesis and antidepressant activity (3, 207), and
observations that IH enhances neurogenesis in vitro (93) and neuroprogenitor cell proliferation in vivo
(264), IH may oppose depression by increasing neurogenesis.

Moderate IH (84 mmHg PaO , 4 h/day, 14 days) produces antidepressant-like effects in multiple animal

models, including the forced swimming test, chronic mild stress, and novelty-suppressed feeding (265).
The latter study showed enhanced hippocampal cell proliferation, an effect that requires BDNF-tyrosine
kinase (TrkB) signaling. Thus, neurogenic and antidepressant-like IH effects may involve BDNF.

Accumulating evidence supports the concept that moderate IH has protective and therapeutic benefits in
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human depression, although this evidence is not yet compelling. For example, IH (5 min of 10% inspired
O  5-min intervals, 120 min/day, 4 wk) reduced depression symptoms in 71% of human patients (15).

Further studies are required to understand the therapeutic potential of IH in cognitive/affective disorders.

Intermittent hypoxia induced-respiratory neuroplasticity.

Acute hypoxia increases carotid chemoreceptor activity, thereby increasing breathing in the manner of a
classical negative feedback loop. This complex response reflects multiple distinct neural mechanisms
operating in different time-domains (175). Factors that differentially elicit these distinct mechanisms
include the pattern of hypoxia (intermittent vs. sustained), the duration of exposure (minutes to days), and
the severity of the hypoxic stimulus (181). Poikilocapnic hypoxia masks the ventilatory response to
hypoxia per se since it reflects stimulation due to hypoxia, offset by ventilatory inhibition from the
resulting hypocapnia. Thus, the CO  status must be considered in any study of ventilation during or after

IH (19).

Different IH protocols elicit different cellular and network mechanisms of respiratory plasticity (14, 152,
153, 239). For example, moderate acute IH elicits a long-lasting (hours), serotonin-dependent increase in
respiratory motor output known as respiratory long-term facilitation (LTF) (9). LTF appears unique to IH,

since it is not evoked by continuous hypoxia of the same cumulative duration (14). Brief IH (3–10
consecutive hypoxic episodes) elicits sustained elevations in phrenic and hypoglossal nerve activity and
ventilation in multiple species (9, 27, 60, 82, 137, 144, 154, 239).

Since intermittent carotid sinus nerve stimulation is sufficient to induce LTF (60, 82), it is an expression of
central neural vs. peripheral respiratory plasticity. Further, since pLTF elicited by moderate acute IH is
blocked by intraspinal administration of serotonin-receptor antagonists (without blocking hypoglossal LTF)
(13), pLTF is to be a form of spinal motor plasticity. On the other hand, carotid chemoafferent neuron
activation is not essential to observe a form of IH-induced pLTF since (surgical or functional) carotid
denervation attenuates, but does not abolish, AIH-induced pLTF (16). However, this form of pLTF may
reflect an alternate (serotonin-independent) pathway to long-lasting phrenic motor facilitation revealed
once the dominant serotonin-dependent pathway has been eliminated. We have come to realize that
multiple, distinct cellular cascades give rise to phenotypically similar, long-lasting phrenic motor
facilitation under different conditions (37).

The correlate of pLTF in unanesthetized, spontaneously breathing animals is ventilatory long-term
facilitation (vLTF) (160, 170). Although initial studies in humans raised questions about its existence
during wakefulness (95, 138, 156), subsequent studies revealed both ventilatory and genioglossus LTF in

humans during non-rapid eye movement sleep (35, 180) or in awake humans with modest (background)
elevations in arterial carbon dioxide (80, 247).

In longer time domains, or with more severe hypoxic episodes, additional forms of plasticity are elicited by
IH (153). For example, CIH (5-min episodes of 10–12% O , 8–12 h/night, 7 days) elicits serotonin-

dependent enhancement of 1) baseline phrenic nerve activity, 2) the short-term hypoxic phrenic response,
and 3) phrenic LTF induced by acute intermittent hypoxia (114, 115). CIH-enhanced LTF represents a form
of metaplasticity (i.e., the ability of prior experience to alter subsequent plasticity) (2, 153). CIH-induced
metaplasticity represents a potential therapeutic advantage in restoring breathing capacity with clinical
disorders that cause respiratory insufficiency [e.g., spinal injury, amyotrophic lateral sclerosis ALS)] (151).
Unfortunately, CIH also elicits considerable morbidity, including hypertension, hippocampal apoptosis, and
cognitive deficits, among others (111, 259, see above). More subtle protocols of repetitive acute
intermittent hypoxia (rAIH) have been developed to elicit pLTF metaplasticity without the detrimental
effects elicited by CIH. For example, rAIH (e.g., 10, 5-min episodes, 10.5% O , 5-min intervals, 3 times

per week for 10 wk or daily for 7 days) increases the expression of key molecules involved in AIH-induced
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phrenic LTF without signs of hippocampal apoptosis, astrogliosis, or systemic hypertension (121, 208,
254). Further, rAIH elicits pLTF metaplasticity, enhancing AIH-induced pLTF following pretreatment with
daily AIH for 7 days (254), or AIH three times per week for 4 wk (124, 245). Thus, fewer hypoxic episodes

per day (even with longer exposure durations) elicit pLTF metaplasticity without pathology. Such protocols
have considerable therapeutic potential following, for example, cervical spinal injury (121, 231).

Activation of different cellular cascades within phrenic motor nuclei accounts for many differential effects
of varied IH protocols. One hallmark of pLTF is its sensitivity to the pattern of hypoxia; specifically,
intermittent, but not sustained, moderate hypoxia elicits pLTF (12). One key difference between
intermittent and sustained hypoxia appears to be the level of ROS-dependent inhibition of okadaic acid-
sensitive, serine threonine protein phosphatases (125, 253, 255). When ROS are scavenged (125) or their
production is blocked (126), pLTF is blocked following moderate AIH. However, by inhibiting spinal
serine/threonine protein phosphatases with okadaic acid after reducing ROS formation, pLTF is restored
(125). Conversely, with moderate sustained hypoxia, serotonin-dependent phrenic LTF is revealed by spinal
okadaic acid administration, suggesting that less ROS-dependent inhibition of the relevant phosphatases
occurs with sustained hypoxia (255). In agreement with this hypothesis, spinal okadaic acid has no effect
on pLTF following moderate AIH, suggesting that the relevant phosphatases have already been inhibited by
some process unique to intermittent, but not sustained, hypoxia (253).

The severity of hypoxia within episodes is a key determinant of the specific cellular mechanisms giving
rise to pLTF (167). For example, moderate AIH (3, 5-min hypoxic episodes; PaO  35–45 mmHg; 5-min

intervals) elicits pLTF by a mechanism that requires spinal serotonin type 2 (5-HT2) receptor activation (9,
13, 65), new synthesis of BDNF (11), and activation of its high-affinity receptor TrkB (11, 39), followed by
ERK MAPK signaling (88). In contrast, more severe AIH (less than 30 mmHg O ) elicits pLTF by a

distinct serotonin-independent mechanism that requires spinal adenosine 2A receptor activation (167).
Spinal adenosine 2A (71) and 5-HT7 receptor activation (86) elicit phrenic motor facilitation (pMF, an
increase in phrenic motor output elicited by receptor activation) by a mechanism that requires new
synthesis of an immature TrkB isoform (not BDNF) and downstream signaling via phosphatidylinositol
3-kinase/protein kinase B (Akt) (not ERK) (71). In longer time domains (days), vascular endothelial growth
factor (VEGF) or EPO-induced phrenic motor facilitation might play a role in longer time domains of IH,
such as during/after CIH or even chronic sustained hypoxia (39). Spinal VEGF or EPO receptor activation

triggers phrenic motor facilitation via mechanisms that require both ERK and Akt signaling (38, 41).

Another contributing factor to the pattern sensitivity of pLTF appears to be balanced cross-talk inhibition
between the competing cellular cascades to pLTF described above (44). With moderate AIH, phrenic LTF
occurs predominantly via the serotonin/BDNF/ERK-dependent Q pathway to phrenic motor facilitation
(37). However, subthreshold activation of the adenosine/TrkB/Akt-dependent S pathway restrains pLTF in
this condition via PKA-dependent cross talk inhibition (85, 87). At some level of hypoxemia, extracellular
ATP/adenosine builds up enough to convert the system from serotonin-dependent (Q) to adenosine-
dependent (S) facilitation (167). With moderate, sustained hypoxia, there appears to be sufficient balance
between the serotonin- (Q) and adenosine-dependent (S) pathway activation to cancel each other via
balanced cross-talk inhibition (44). The strongest evidence for this is that spinal pretreatment with an
adenosine 2A receptor antagonist reveals serotonin-dependent phrenic LTF following moderate sustained
hypoxia (44). Thus, a number of factors contribute to the pattern sensitivity of pLTF. The essential point
from the perspective of this review is that these distinctions in the pattern and severity of hypoxia protocols
are essential if we are to control the specific physiological outcomes for therapeutic benefit.

Collective evidence demonstrates that moderate repetitive AIH can be harnessed as a therapeutic tool to
restore lost respiratory (and nonrespiratory) motor output in clinical disorders that cause respiratory

insufficiency, such as amyotrophic lateral sclerosis (151, 168), spinal cord injury (121, 151), and sleep
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apnea (139), or that compromise breathing due to mechanical constraints such as COPD (215).

Breathing in amyotrophic lateral sclerosis.

ALS is a degenerative motor neuron disease, involving death of respiratory motor neurons (267). Patients
with ALS invariably develop respiratory muscle weakness, and the most common cause of death is
ventilatory failure (108). Transgenic rats overexpressing a mutated form of superoxide dismutase

(SOD1 ) have been studied extensively as an animal model of familial ALS. SOD1  mutants

exhibit progressive motor neuron death and faithfully mimic important aspects of familial ALS in humans,
including compromise of phrenic motor output (120, 161). Interestingly, although more than 60–80% of all
phrenic motor neurons die at disease end-stage, phrenic motor output, only decreases between 40 and 50%
(168), reflecting the onset of ventilatory failure. Nevertheless, despite major losses of intercostal motor
neurons, the ability to increase tidal volume during maximal chemoreceptor stimulation is fully preserved
(40). Thus, there is considerable intrinsic capacity to compensate for major losses of key respiratory motor
neurons, thereby preserving the capacity to generate tidal volume until late in disease progression. The
mechanisms underlying such spontaneous compensation are not yet known, but may reflect forms of
plasticity similar to pLTF since surviving phrenic motor neurons at disease end-stage express high levels of
BDNF and TrkB protein (209). Nevertheless, respiratory motor neuron death eventually overcomes the
capacity for spontaneous compensation, leading to overt ventilatory failure (229).

We recently tested the hypothesis that IH-induced respiratory motor plasticity strengthens synaptic inputs to

surviving motor neurons, thereby enhancing respiratory motor output and slowing progression to
ventilatory failure in ALS. Indeed, at disease end stage, a single presentation of AIH (3, 5-min episodes,
PaO  35–45 mmHg, 5-min intervals) fully restores the capacity to increase phrenic motor output in

anesthetized rats (168). Further studies are needed to understand the potential of repetitive AIH to preserve
ventilatory capacity further into disease progression, hopefully improving the quality of life for patients
with this devastating disease.

Breathing after spinal cord injury.

Respiratory complications are the leading causes of morbidity and mortality in patients with spinal cord
injury (SCI), especially among cervical and higher-thoracic injuries (161a). There are few therapeutic
options available after the acute, postinjury period, when mechanisms of spontaneous recovery are
exhausted, and additional functional improvement is unlikely (141). Recent work in rodent models has
demonstrated that repetitive AIH is a viable therapeutic approach to restore breathing capacity after
cervical spinal hemisections (121).

Cervical spinal hemisection at C2 (C2HS) causes persistent deficits in the capacity to increase phrenic
motor output (69) and tidal volume in rats (63, 121). In rats with C2HS, even a single presentation of AIH

strengthens spinal synaptic pathways to phrenic motor neurons below the hemisection by activating
serotonin-dependent neuroplasticity (63, 70). However, the capacity of AIH to induce crossed-spinal
synaptic pathways to phrenic motor neurons below the injury is highly dependent on time postinjury. For
example, following C2HS, AIH (3 episodes, 5 min at 11% O , 5-min intervals) induces ipsilateral pLTF

(>60 min post-AIH) at 8 wk postinjury, but not at 2 wk postinjury in Sprague-Dawley and Lewis rats (70).
This increasing ability to elicit pLTF with time postinjury correlates with spontaneous restoration of
serotonergic input to the phrenic motor nucleus below the injury (70). Thus, IH may be more effective at
restoring respiratory function in patients with chronic (vs. acute) spinal injury, once descending
serotonergic innervation has had sufficient time to recover below the injury to the greatest extent possible.
Further, 2 wk post-C2HS, repeated AIH (10, 5-min episodes per day, 10.5% O , 5-min intervals, 7

consecutive days beginning 7 days post-C2HS) increases the strength of crossed-spinal synaptic inputs to
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phrenic motor neurons and at least partially restores the capacity to increase tidal volume during maximal
chemoreceptor stimulation in rats (121). This functional recovery is accompanied by increased expression
of key proteins necessary for AIH-induced phrenic motor plasticity (121), without evidence for

hippocampal cell death or reactive gliosis. Detailed mechanisms of rAIH-induced functional recovery are
not yet fully explored.

A more aggressive CIH protocol in rats (72, 5-min episodes of 10.5% O , 5-min intervals, 7 consecutive

nights, beginning 7 days postinjury) also induces functional recovery of phrenic motor output and
strengthens crossed spinal synaptic inputs to phrenic motor neurons below the injury (64). However, CIH is
expected to elicit morbidities, such as systemic hypertension, CNS inflammation, and neuronal death. Since
the less severe repetitive AIH elicits similar functional recovery without apparent morbidity (208), such
“low-dose” IH protocols have greater clinical potential.

Limb function and walking after spinal cord injury.

Repetitive AIH also elicits sustained functional recovery of forelimb function in rats with partial C2HS
(121). rAIH-induced functional improvement is accompanied by increased BDNF and TrkB levels in
cervical (C7) motor nuclei innervating the forelimb (121). Although the detailed mechanisms of this
functional recovery have not been verified, we suggested that the same serotonin-dependent mechanisms
facilitate motor output in respiratory and nonrespiratory motor nuclei (39).

The use of IH to improve limb function in humans with incomplete, chronic SCI has also shown promising

results. A single AIH presentation (15, 1-min episodes of 9% O , 1-min intervals) in incomplete, chronic

(>1 year) spinal cord injury patients [American Spinal Cord Injury Association Impairment Scale (AIS) C
or D] increases the ability to voluntarily generate plantar flexion for at least 4 h post-AIH (235).
Subsequently, in a randomized, double-blind, placebo-controlled, cross-over design study, the impact of
repetitive AIH (15 episodes per day, 90 s of 9% O , 60-s intervals, 5 consecutive days) combined with

walking training was studied in 19 chronic, incomplete SCI patients (AIS D) (83). Daily AIH alone
increased walking speed 18% 3 days after treatment (10-m walk test), whereas dAIH combined with
walking training improved both walking speed and distance (38%) after 5 days and at 1 wk post-dAIH (83).
Importantly, no changes in spasticity, heart rate, or cognitive function were noted after dAIH, suggesting
that this moderate IH dose is relatively safe in humans.

General Discussion

Intermittent hypoxia has been a subject of considerable investigation from the viewpoint of its adverse and

(less widely known) beneficial effects. Recent studies reveal that IH has varied effects on multiple systems
and that the magnitude of these effects (and even the direction) depends on the IH dose. Relevant variables
include 1) the severity of hypoxemia, 2) the duration of hypoxia, 3) the number of cycles/day, 4) the pattern
of IH presentation (e.g., consecutive days vs. alternating days) and 5) the total protocol duration. Of these,
the severity of hypoxia and the number of cycles per day appear to be most strikingly correlated with its
qualitative effects (Fig. 1). With high cycle numbers and/or severe hypoxic episodes, pathogenesis is more
common, although potentially beneficial effects are also observed (Fig. 2). With low cycle numbers per day
and/or mild to moderate hypoxic episodes, apparently beneficial effects are more predominant (with
considerably less pathology) (Fig. 3). Accumulating evidence suggests that low-dose IH has considerable
therapeutic potential to treat multiple clinical conditions (Fig. 1).

Detrimental effects of high-dose IH protocols (2–8% O , 48–2,400 cycles/day) are observed in multiple

systems and include systemic hypertension (21, 57, 111, 225), hypercholesterolemia (210), obesity, insulin
resistance (189), increased sympathetic activation (268), pulmonary hypertension (142), cognitive deficits

(30, 48, 74), and inflammation (4) (Fig. 1). In striking contrast, low-dose IH protocols (9–16% O , 3–15
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cycles/day) reduce arterial hypertension (213), strengthen innate immune responses, reduce inflammation
(214), reduce body weight, increase aerobic capacity (240), improve glucose tolerance (33), increase bone
mineral density (77), enhance spatial learning and memory (122, 262), rescue ischemia-induced memory

impairment (237, 238), reduce symptoms of depression (15), improve postischemic recovery of myocardial
contractile function (249), increase respiratory capacity in COPD (79), and increase respiratory and
nonrespiratory somatic motor recovery following spinal injuries in rats and humans (83, 121, 235, 244) (
Fig. 1). Moreover, repetitive low-dose IH has these benefits without detectable adverse consequences, such
as hypertension (254), neuronal cell loss and/or reactive gliosis (121, 208), and systemic inflammation
(185, 227).

Detrimental effects induced by high-dose IH often relate to increased oxidative stress and systemic
inflammation. Repetitive hypoxia-reoxygenation is in some respects like repeated ischemia-reperfusion,
and increases ROS formation (106). Increased ROS production will activate NF-κB and, hence, expression
of NF-κB target genes, such as proinflammatory cytokines (e.g., TNF-α, IL-6, and ICAM-1) (106). Such
inflammatory molecules have potential to cause cellular damage and endothelial dysfunction, with
associated morbidities. In contrast, modest IH protocols do not cause inflammation in humans (214), and
may, in fact, strengthen the innate immune system, while suppressing proinflammatory mediator
production (214). Thus, there are multiple reasons to suggest that low-dose IH will be simple, safe, and
effective in the treatment of diverse clinical disorders that affect multiple body systems. To optimize IH as
a therapeutic approach to treat clinical disorders, a balance must be achieved between maximizing benefits

(i.e., the highest IH dose possible) without pathology (i.e., not high enough to trigger pathogenesis). It is
also important to understand conditions that may undermine the therapeutic efficacy of IH. For example,
systemic inflammation (commonly present in SCI patients) undermines hippocampal synaptic plasticity
(i.e., learning and memory), as well as spinal respiratory motor plasticity (89, 91, 246). By preventing this
undermining effect, we may be able to maximize therapeutic benefits.

Perspectives and Significance

The potential applications of IH in health and pathological states are numerous, but require considerable
research to develop protocols that optimize the balance between efficacy and safety in each physiological
system. The benefits of this research may be considerable since low-dose IH appears to represent a simple,
safe, nonpharmacological method to enhance normal physiological functions, or to restore lost functions
(i.e., rehabilitation) in patients with diverse chronic clinical disorders.
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Fig. 1.

Schematic summarizing factors most influential in determining the balance of beneficial vs. pathogenic intermittent
hypoxia (IH) effects. IH protocols consisting of severe hypoxia (2–8% inspired O ) and between 48–2,400 cycles/day are

prone to pathology; citations demonstrating pathogenic effects of IH are listed in the upper left quadrant (i.e., high cycle

numbers per day with relatively severe hypoxemia within episodes, as indicated by orange/red shading). In contrast, IH

protocols consisting of moderate IH (>9% inspired O ; <15 cycles/day) appear to elicit beneficial (potentially

“therapeutic”) effects with minimal pathology; citations demonstrating beneficial effects of IH are listed in the lower right

quadrant (indicated by blue shading). There is unlikely to be a clear division between protocols giving rise to

pathogenic/beneficial effects since there is most likely a gradual transition (39); further, details of this transition may differ
in detail among physiological systems. Representative literature concerning the range of IH protocols investigated are

summarized in Figs. 2 (pathogenic) and 3 (beneficial).
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Fig. 2.

Selected IH protocols reported to elicit pathology. Each protocol depicts the effective IH “dose,” including the severity of

hypoxia during each episode (inspired O ), the duration of hypoxic episodes (6 s to 12 h), the number of cycles per day

(c/day), and the total time of exposure. Severe protocols (2–8% inspired O , 48–2,400 c/day) have been shown to elicit

detrimental effects in multiple physiological systems (see orange-to-red shading in Fig. 1).
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Fig. 3.

Selected IH protocols reported to elicit beneficial (potentially) therapeutic effects. Each protocol depicts the effective IH

“dose,” including the severity of hypoxia during each episode (inspired O ), the duration of hypoxic episodes (6 s to 12 h),

the number of cycles per day (c/day), and the total time of exposure. Moderate IH protocols consisting of 9–16% O  and

up to 15 cycles per day elicit beneficial effects in multiple physiological systems (blue shading in Fig. 1).
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